and 4.433 (7) \AA, respectively] are longer. The bond angles of $\mathrm{Ge}-\mathrm{O}-\mathrm{Ge}$ in (1) $\left[124.9\right.$ (2), 126.6 (2) $\left.{ }^{\circ}\right]$ are significantly smaller than those in (3) [131.4(5)$\left.136.9(5)^{\circ}\right]$.

(3)

Although there is no intramolecular distance shorter than the sum of the van der Waals radii, except for $\mathrm{Gel} \cdots \mathrm{Gel}$ and $\mathrm{Ge} 2 \cdots \mathrm{Ge} 2$, there is an intermolecular distance that is shorter, i.e. $\mathrm{H} 252 \cdots \mathrm{H} 232[-0.5+x, 0.5-y, 0.5+z ; 2.15$ (6) \AA], where H 252 and H 232 are the H atoms bonded to C25 and C23, respectively. That is, short intermolecular contacts only occur between the germacyclohexane rings with Gel, suggesting that the effect of molecular packing on the structure is less in the germacyclohexane ring with Gel than in the other germacyclohexane ring.

We thank Dr Koshiro Toriumi of the Institute of Molecular Science for help in the measurement of diffraction data and Dr Sydney R. Hall for valuable advice on the use of $X T A L$. This work was supported by the Grant-in-Aid for Scientific Research on Priority Areas No. 02230108 from the Ministry of Education, Science and Culture, Japanese Government, and by the ASAI Germanium Research Institute.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Faucher, A. R., Mazerolles, P., Jaud, J. \& Galy, J. (1978). Acta Cryst. C34, 442-445.
Hall, S. R. \& Stewart, J. M. (1989, 1990). Editors. XTAL2.6, XTAL 3.0 Users Manuals. Univs of Western Australia, Australia, and Maryland, USA.
Mazerolles, P. (1962). Bull. Soc. Chim. Fr. pp. 1907-1913.
Preut, H., Köcher, J. \& Neumann, W. P. (1985). Acta Cryst. C41, 912-915.
ROSS, L. \& DräGER, M. (1984). Z. Naturforsch. Teil B, 39, 868-875.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Germany.
Sommese, A. G., Cremer, S. E., Campbell, J. A. \& Thompson, M. R. (1990). Organometallics, 9, 1784-1792.

Takeuchi, Y., Shimoda, M., Tanaka, K., Tomoda, T., Ogawa, K. \& Suzuki, H. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 7-13.

Structure of 1,2;1,3-Di- μ-carbonyl-1,1,2,2,3,3,4-heptacarbonyl-2,3- $\mu-\boldsymbol{\eta}^{3}$ -cyclooctenyl-2,4- μ-hydrido-4-tricyclohexylphosphine-tetrahedro-trirutheniumplatinum

By Louis J. Farrugia,* Neil MacDonald and Robert D. Peacock
Department of Chemistry, The University, Glasgow G12 8QQ, Scotland

(Received 9 May 1991; accepted 9 July 1991)

Abstract

Ru}_{3} \mathrm{Pt}\left(\mu-\eta^{3}-\mathrm{C}_{8} \mathrm{H}_{13}\right)(\mu-\mathrm{CO})_{2}(\mathrm{CO})_{7}(\mu-\mathrm{H})-\right.\) $\left.\left\{\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}\right], \quad M_{r}=1141.02$, triclinic, $\quad P \overline{1}, \quad a=$ 10.192 (1), $\quad b=21.121$ (7), $\quad c=21.235$ (6) $\AA, \quad \alpha=$ 118.83 (3),$\quad \beta=96.67$ (2), $\quad \gamma=95.56$ (2) ${ }^{\circ}, \quad V=$ 3916 (2) $\AA^{3}, Z=4, D_{x}=1.94 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \quad \mu=48.0 \mathrm{~cm}^{-1}, \quad F(000)=2216, \quad T=$ $298 \mathrm{~K}, R=0.035$ for 5663 unique observed reflections. The metal atoms adopt a tetrahedral core, with a 58 cluster valence-electron count. A cyclo- $\mathrm{C}_{8} \mathrm{H}_{13}$ ligand bridges two Ru atoms in a three-electron

[^0]0108-2701/91/122561-04\$03.00
donor μ-allyl mode, while the other two $\mathrm{Ru}-\mathrm{Ru}$ edges are bridged by carbonyl ligands.

Introduction. A considerable number of triosmiumplatinum clusters have now been structurally characterized (Farrugia, 1990), and these may have either a tetrahedral $\mathrm{Os}_{3} \mathrm{Pt}$ core for cluster valence-electron (CVE) counts of 58 or 60 , or a 'butterfly' core with 60 CVE's. The tetrahedral 58 CVE clusters, exemplified by $\mathrm{Os}_{3} \mathrm{Pt}(\mu-\mathrm{H})_{2}(\mathrm{CO})_{10}\left(\mathrm{P} R_{3}\right)(1)$ (Farrugia, Howard, Mitrprachachon, Stone \& Woodward, 1981), are chemically unsaturated and highly reac-
(C) 1991 International Union of Crystallography
tive. Few ruthenium-platinum clusters have been reported (Farrugia, 1990), and herein we detail the structure of a 58 CVE tetrahedral $\mathrm{Ru}_{3} \mathrm{Pt}$ cluster, which is electronically related to (1).

Experimental. The title complex was isolated as a minor product ($\mathrm{ca} 5 \%$) from a 1:1:1 reaction of bis(cyclooctadiene)platinum, tricyclohexylphosphine and the anion $\left[\mathrm{Ru}_{3}(\mu-\mathrm{H})(\mathrm{CO})_{11}\right]^{-}$in diethyl ether at 273 K under an ethylene atmosphere. After stirring for $c a l \mathrm{~min}$, the dark red-brown mixture was treated with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$, and chromatographed on a florosil column. This gave several uncharacterized yellow, orange and red-orange bands, and a green band for the title complex. Dark-green prisms were obtained from dichloromethane/hexane solution: crystal dimensions ca $0.1 \times 0.1 \times 0.06 \mathrm{~mm}$; EnrafNonius CAD-4F diffractometer; graphite monochromator; $\theta / 2 \theta$ scan mode; cell parameters* refined by least-squares methods from setting angles of 25 independent reflections with $12<\theta<13^{\circ}$; intensities measured to $\theta=22.5^{\circ}$ over $h k l$ range 0 to $10,-22$ to $22,-22$ to $22 ; 259, \overline{4} \overline{3} 0$ and $56 \overline{1}$ measured every 2 h with a 4\% decay over 144 h data collection; 10891 data measured, 10200 independent data with 5663 having $I>3.0 \sigma(I)$ considered observed and used in structure determination and refinement; $R_{\text {int }}=0.028$ before and 0.024 after absorption correction; corrected for decomposition, Lp and absorption (DIFABS; Walker \& Stuart, 1983), maximum, minimum values of applied absorption correction 1.16, 0.89 ; solved by direct methods (MITHRIL; Gilmore, 1984) and subsequent least squares; anisotropic thermal parameters for all non-H atoms, except cyclohexyl C atoms, fixed isotropic thermal parameters ($U=$ $0.05 \AA^{2}$) for all H atoms; the positions of the allylic hydrogens $\mathrm{H}(10 A)-\mathrm{H}(12 B)$ were determined from difference Fourier maps, but were not refined; all other H atoms included at calculated positions $[\mathrm{C}-\mathrm{H}=1.0, \quad \mathrm{Pt}-\mathrm{H}=1.85, \quad \mathrm{Ru}-\mathrm{H}=1.75 \AA$ (HYDEX; Orpen, 1980)]; $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ minimized with $w=\left[\sigma^{2}\left(F_{o}\right)\right]^{-1}$; maximum $\Delta / \sigma=0.29$, average $=0.05 ; \Delta \rho_{\text {max }}=1.25, \Delta \rho_{\text {min }}=-0.97 \mathrm{e} \AA^{-3}$ in vicinity of Pt atom; final $R=0.035, w R=0.037$, blocks of 235 and 253 parameters were refined in alternate cycles owing to limitations on matrix size; S $=1.48$; atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV, pp. 71-151); calculations carried out on a MicroVAX 3600 computer using the $G X$ suite of programs (Mallinson \& Muir, 1985).

[^1]Table 1. Fractional coordinates and isotropic thermal parameters $\left(\AA^{2}\right)$ (equivalent isotropic parameters U_{eq} for anisotropic atoms)

	$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.			
	x	y	z	$U_{\text {eq }}$
$\mathrm{Pt}(1 A)$	-0.92872 (5)	0.73192 (3)	0.92914 (3)	0.039
$\mathrm{Pt}(1 B)$	-0.80466 (5)	0.25854 (3)	0.55654 (3)	0.046
$\mathrm{Ru}\left(1,{ }^{\text {) }}\right.$	-0.91503 (10)	0.71142 (5)	1.05368 (5)	0.041
$\mathrm{Ru}(1 B)$	-0.82341 (11)	0.24756 (5)	0.41539 (5)	0.049
$\mathrm{Ru}(2 A)$	-1.14426 (10)	0.74285 (5)	1.00611 (6)	0.050
$\mathrm{Ru}(2 \mathrm{~B})$	- 1.04939 (11)	0.21217 (7)	0.45404 (6)	0.070
$\mathrm{Ru}(3 A)$	- 1.09274 (10)	0.61066 (5)	0.91650 (5)	0.043
$\mathrm{Ru}(3 A)$	-0.94085 (11)	0.35447 (6)	0.52793 (6)	0.058
$\mathrm{P}(1 / A)$	-0.7693 (3)	0.8141 (2)	0.9186 (2)	0.036
$\mathrm{P}(1 B)$	-0.6620 (3)	0.1948 (2)	0.5927 (2)	0.045
$\mathrm{O}(1 /$)	-0.6857 (11)	0.8058 (5)	1.1810 (5)	0.089
$\mathrm{O}(18)$	-0.6513 (12)	0.1563 (5)	0.3103 (5)	0.108
$\mathrm{O}(2 A)$	-1.0579 (10)	0.6534 (5)	1.1366 (5)	0.101
$O(2 B)$	-0.9839 (11)	0.2759 (6)	0.3077 (5)	0.102
$\mathrm{O}(3 A)$	-0.9666 (10)	0.8699 (4)	1.1467 (5)	0.074
$\mathrm{O}(3 \mathrm{~B})$	-0.9489 (12)	0.0838 (5)	0.3336 (5)	0.101
$\mathrm{O}(4 A)$	-1.2423 (9)	0.8660 (5)	0.9892 (5)	0.085
$O(4 B)$	- 1.1558 (12)	0.1039 (6)	0.4975 (7)	0.146
O(5A)	-1.3669 (9)	0.6427 (5)	0.8748 (5)	0.082
$\mathrm{O}(5 B)$	- 1.2091 (11)	0.3108 (7)	0.5611 (7)	0.146
$\mathrm{O}(6 A)$	-1.3418 (10)	0.7460 (5)	1.1007 (5)	0.097
O(6B)	-1.2938 (11)	0.1699 (8)	0.3396 (7)	0.171
$\bigcirc \mathrm{O}(7)$	-1.2651 (9)	0.5086 (5)	0.9456 (5)	0.089
$\mathrm{O}(7 B)$	- 1.0924 (11)	0.4155 (6)	0.4466 (6)	0.121
$\mathrm{O}(8 A)$	-1.1933 (10)	0.5212 (S)	0.7530 (5)	0.092
$\mathrm{O}(8 B)$	-0.9802 (16)	0.4796 (8)	0.6690 (6)	0.189
$\mathrm{O}(9 A)$	- 1.1256 (10)	0.6896 (6)	0.7936 (5)	0.105
$\mathrm{O}(9 \mathrm{~B})$	-0.9237 (12)	0.3335 (6)	0.6915 (5)	0.122
$\mathrm{C}(14)$	-0.7710 (13)	0.7697 (6)	1.1316 (6)	0.058
$\mathrm{C}(18)$	-0.7121 (14)	0.1910 (7)	0.3505 (7)	0.066
$\mathrm{C}(2 A)$	- 1.0022 (13)	0.6753 (6)	1.1044 (7)	0.059
C(2B)	-0.9174 (15)	0.2655 (7)	0.3488 (7)	0.073
$\mathrm{C}(3 A)$	-0.9981 (13)	0.8092 (7)	1.0958 (7)	0.064
$\mathrm{C}(3 B)$	-0.9456 (15)	0.1456 (7)	0.3776 (7)	0.076
$\mathrm{C}(4 A)$	- 1.2090 (12)	0.8181 (7)	0.9957 (7)	0.059
$\mathrm{C}(4 \mathrm{~B})$	- 1.1186 (17)	0.1425 (9)	0.4780 (8)	0.105
$\mathrm{C}(5 A)$	-1.2603 (12)	0.6593 (7)	0.9131 (7)	0.065
$\mathrm{C}(5 B)$	- 1.1196 (14)	0.2996 (8)	0.5322 (7)	0.082
C(6A)	-1.2672 (13)	0.7462 (6)	1.0647 (7)	0.059
$\mathrm{C}(6 B)$	-1.2000 (15)	0.1837 (10)	0.3833 (10)	0.117
$\mathrm{C}(7 A)$	-1.1982 (12)	0.5450 (6)	0.9335 (6)	0.056
$\mathrm{C}(7 B)$	-1.0304 (13)	0.3937 (7)	0.4786 (7)	0.069
$\mathrm{C}(8 A)$	-1.1542 (13)	0.5536 (7)	0.8146 (7)	0.067
$\mathrm{C}(8 B)$	-0.9639 (17)	0.4322 (9)	0.6184 (8)	0.111
$\mathrm{C}(9 A)$	- 1.0522 (14)	0.7037 (7)	0.8454 (7)	0.076
$\mathrm{C}(9 B)$	-0.8856 (14)	0.3043 (8)	0.6371 (7)	0.080
$\mathrm{C}(10 \mathrm{~A})$	-0.7794 (13)	0.6296 (6)	1.0230 (6)	0.051
$\mathrm{C}(10 \mathrm{~B})$	-0.6482 (13)	0.3364 (7)	0.4453 (7)	0.061
$\mathrm{C}(11 A)$	-0.8897 (13)	0.5761 (6)	0.9706 (7)	0.052
$\mathrm{C}(118)$	-0.7368 (12)	0.3879 (7)	0.4819 (7)	0.058
$\mathrm{C}(12 A)$	-0.9249 (13)	0.5465 (6)	0.8957 (8)	0.059
$\mathrm{C}(12 \mathrm{~B})$	-0.7450 (14)	0.4302 (7)	0.5559 (8)	0.062
$\mathrm{C}(13 A)$	-0.8294 (13)	0.5605 (7)	0.8508 (7)	0.062
$\mathrm{C}(13 B)$	-0.6460 (15)	0.4363 (7)	0.6176 (7)	0.068
C (14A)	-0.7118 (15)	0.5174 (7)	0.8406 (8)	0.075
$\mathrm{C}(14 B)$	-0.5082 (19)	0.4819 (9)	0.6305 (13)	0.122
$\mathrm{C}(15 A)$	-0.6449 (14)	0.5152 (7)	0.9081 (9)	0.081
$\mathrm{C}(15 B)$	-0.440 (2)	0.467 (2)	0.572 (2)	0.187
$\mathrm{C}(16 A)$	-0.5708 (13)	0.5863 (7)	0.9714 (7)	0.067
$\mathrm{C}(16 B)$	-0.4153 (16)	0.3993 (10)	0.5157 (12)	0.115
$\mathrm{C}(17 \mathrm{~A})$	-0.6511 (12)	0.6493 (6)	1.0026 (7)	0.055
$\mathrm{C}(17 \mathrm{~B})$	-0.5223 (14)	0.3329 (8)	0.4857 (8)	0.077
$\mathrm{C}(1118)$	-0.6560 (11)	0.8846 (5)	1.0032 (6)	0.033 (3)
$\mathrm{C}(1118)$	-0.6214 (12)	0.1120 (6)	0.5158 (6)	0.048 (3)
$\mathrm{C}(112 A)$	-0.5588 (11)	0.8515 (6)	1.0356 (6)	0.040 (3)
$\mathrm{C}(112 B)$	-0.5340 (13)	0.1301 (6)	0.4714 (7)	0.053 (3)
$\mathrm{C}(113 A)$	-0.4633 (12)	0.9111 (6)	1.1039 (6)	0.048 (3)
C (113B)	-0.5033 (15)	0.0600 (8)	0.4078 (8)	0.071 (4)
$\mathrm{C}(114 A)$	-0.5391 (13)	0.9625 (7)	1.1613 (7)	0.058 (4)
$\mathrm{C}(114 B)$	-0.6310 (15)	0.0064 (8)	0.3611 (8)	0.072 (4)
$\mathrm{C}(115 A)$	-0.6300 (14)	0.9946 (7)	1.1298 (7)	0.059 (4)
$\mathrm{C}(115 B)$	-0.7128 (15)	-0.0117 (8)	0.4055 (8)	0.076 (4)
$\mathrm{C}(116 A)$	-0.7308 (12)	0.9351 (6)	1.0611 (6)	0.046 (3)
$\mathrm{C}(116 B)$	-0.7484 (14)	0.0584 (7)	0.4679 (7)	0.058 (4)
$\mathrm{C}(121 A)$	-0.8564 (11)	0.8616 (5)	0.8778 (5)	0.031 (3)
$\mathrm{C}(121 B)$	-0.7273 (13)	0.1636 (7)	0.6528 (7)	0.054 (3)
$\mathrm{C}(122 A)$	-0.7785 (12)	0.9264 (6)	0.8784 (6)	0.048 (3)
$\mathrm{C}(122 B)$	-0.6701 (14)	0.0999 (7)	0.6540 (7)	0.061 (4)
$\mathrm{C}(123 A)$	-0.8612 (14)	0.9505 (7)	0.8317 (7)	0.060 (4)
C(123B)	-0.7102 (17)	0.0902 (9)	0.7167 (9)	0.091 (5)

Table 1 (cont.)

	x	y	z	$U_{\text {eq }}$
	x	$0.9682(7)$	$0.8551(7)$	$0.054(3)$
$\mathrm{C}(124 A)$	$-0.992(13)$	$0.969(8)$	$0.7126(8)$	$0.082(5)$
$\mathrm{C}(124 B)$	$-0.8525(17)$	$0.0799(7)$	$0.056(4)$	
$\mathrm{C}(125 A)$	$-1.0699(13)$	$0.9066(7)$	$0.8587(7)$	$0.086(5)$
$\mathrm{C}(125 B)$	$-0.9143(16)$	$0.1414(8)$	$0.7100(8)$	$0.049(3)$
$\mathrm{C}(126 A)$	$-0.9857(13)$	$0.8841(6)$	$0.9063(6)$	$0.082(5)$
$\mathrm{C}(126 B)$	$-0.8743(16)$	$0.1490(8)$	$0.6452(8)$	$0.038(3)$
$\mathrm{C}(131 A)$	$-0.6553(11)$	$0.7617(6)$	$0.8579(6)$	$0.046(3)$
$\mathrm{C}(131 B)$	$-0.5001(12)$	$0.2543(6)$	$0.6448(6)$	$0.059(4)$
$\mathrm{C}(132 A)$	$-0.7339(13)$	$0.7044(7)$	$0.7816(7)$	$0.058(4)$
$\mathrm{C}(132 B)$	$-0.5165(14)$	$0.3270(7)$	$0.7130(7)$	$0.067(4)$
$\mathrm{C}(133 A)$	$-0.6431(15)$	$0.6546(7)$	$0.7352(7)$	$0.067(4)$
$\mathrm{C}(133 B)$	$-0.3843(15)$	$0.3801(7)$	$0.7481(7)$	$0.074(4)$
$\mathrm{C}(134 A)$	$-0.5249(15)$	$0.6989(8)$	$0.7290(8)$	$0.087(5)$
$\mathrm{C}(134 B)$	$-0.2767(17)$	$0.3451(8)$	$0.7682(9)$	$0.062(4)$
$\mathrm{C}(135 A)$	$-0.4496(14)$	$0.7575(7)$	$0.8021(7)$	$0.078(4)$
$\mathrm{C}(135 B)$	$-0.2576(16)$	$0.2736(8)$	$0.7040(8)$	$0.055(4)$
$\mathrm{C}(136 A)$	$-0.5424(13)$	$0.8079(7)$	$0.8480(7)$	$0.059(4)$
$\mathrm{C}(136 B)$	$-0.3926(14)$	$0.2216(7)$	$0.6680(7)$	0.050
$\mathrm{H}(1 A)$	-0.81650	0.74580	1.01080	0.050
$\mathrm{H}(1 B)$	-0.72200	0.23170	0.47690	

Table 2. Selected bond lengths (\AA) and bond angles (${ }^{\circ}$) with e.s.d.'s in parentheses

$\mathrm{Pt}(1 A)-\mathrm{Ru}(1 A)$	$2.869(1)$	$\mathrm{Pt}(1 B)-\mathrm{Ru}(1 B)$	$2.874(1)$
$\mathrm{Pt}(1 A)-\mathrm{Ru}(2 A)$	$2.849(1)$	$\mathrm{Pt}(1 B)-\mathrm{Ru}(2 B)$	$2.851(1)$
$\mathrm{Pu}(1 A)-\mathrm{Ru}(3 A)$	$2.798(1)$	$\mathrm{Pt}(1 B)-\mathrm{Ru}(3 B)$	$2.817(1)$
$\mathrm{Ru}(1 A)-\mathrm{Ru}(2 A)$	$2.705(1)$	$\mathrm{Ru}(1 B)-\mathrm{Ru}(2 B)$	$2.690(2)$
$\mathrm{Ru}(1 A)-\mathrm{Ru}(3 A)$	$2.889(1)$	$\mathrm{Ru}(1 B)-\mathrm{Ru}(3 B)$	$2.868(2)$
$\mathrm{Ru}(2 A)-\mathrm{Ru}(3 A)$	$2.662(1)$	$\mathrm{Ru}(2 B)-\mathrm{Ru}(3 B)$	$2.669(2)$
$\mathrm{Pu}(1 A)-\mathrm{P}(1 A)$	$2.370(3)$	$\mathrm{Pt}(1 B)-\mathrm{P}(1 B)$	$2.374(4)$
$\mathrm{Ru}(1 A)-\mathrm{C}(10 A)$	$2.215(13)$	$\mathrm{Ru}(1 B)-\mathrm{C}(10 B)$	$2.247(13)$
$\mathrm{Ru}(1 A)-\mathrm{C}(11 A)$	$2.596(13)$	$\mathrm{Ru}(1 B)-\mathrm{C}(11 B)$	$2.594(13)$
$\mathrm{Ru}(3 A)-\mathrm{C}(11 A)$	$2.586(13)$	$\mathrm{Ru}(3 B)-\mathrm{C}(11 B)$	$2.576(13)$
$\mathrm{Ru}(3 A)-\mathrm{C}(12 A)$	$2.237(13)$	$\mathrm{Ru}(3 B)-\mathrm{C}(12 B)$	$2.255(13)$
$\mathrm{Ru}(1 A)-\mathrm{C}(10 A)-\mathrm{C}(11 A)$	$88.2(8)$	$\mathrm{Ru}(1 B)-\mathrm{C}(10 B)-\mathrm{C}(11 B)$	$86.0(8)$
$\mathrm{C}(10 A)-\mathrm{C}(11 A)-\mathrm{C}(12 A)$	$131.8(12)$	$\mathrm{C}(10 B)-\mathrm{C}(11 B)-\mathrm{C}(12 B)$	$131.9(12)$
$\mathrm{Ru}(3 A)-\mathrm{C}(12 A)-\mathrm{C}(11 A)$	$87.9(9)$	$\mathrm{Ru}(3 B)-\mathrm{C}(12 B)-\mathrm{C}(11 B)$	$86.2(9)$

Discussion. Final positional parameters are given in Table 1, with selected bond distances and angles in Table 2.* The atomic labelling scheme and molecular structure of the two crystallographically independent molecules (A) and (B) are shown in Figs. 1 and 2. There are no significant differences between these two molecules and the discussion will focus on the metrical parameters of molecule (A). A cyclo- $\left\{\mu-\eta^{3}-\right.$ $\left.\mathrm{C}_{8} \mathrm{H}_{13}\right\}$ ligand, formally derived from protonation of cyclooctadiene, is bonded to $\mathrm{Ru}(1 A)$ and $\mathrm{Ru}(3 A)$ and acts as a three-electron donor. Since the $\mathrm{Ru}(1 A)-\mathrm{C}(10 A)$ distance is marginally shorter than the $\mathrm{Ru}(3 A)-\mathrm{C}(12 A)$ separation, the ligand could be regarded as an enyl ligand, σ bonded to $\mathrm{Ru}(1 A)$ and π bonded to $\mathrm{Ru}(3 A)$. However, since the three-carbon-chain bridges the $\mathrm{Ru}(1 A)-\mathrm{Ru}(3 A)$ bond in a nearly symmetric fashion, the ligand may be more profitably viewed as a cyclic $\mu-\eta^{3}$-allyl. Similar symmetric μ-allyl bonding modes have been observed in a number of Pd_{2} and Pt_{2} complexes (Werner, 1981).

[^2]The formation of this μ-allyl- Ru_{2} linkage in the title cluster is somewhat unusual. Olefinic bonds normally react with clusters to afford $\sigma-\pi$-vinyl $-M_{2}$ moieties through activation of an olefinic $\mathrm{C}-\mathrm{H}$ bond (see, for example, Bhadhuri, Johnson, Kelland, Lewis, Raithby, Rehani, Sheldrick, Wong \& McPartlin, 1979). A five-electron-donor μ_{3}-allyl bonding mode has also been observed in $\mathrm{Ru}_{3}(\mu-\mathrm{H})\left\{\mu_{3}-\eta^{3}\right.$ $(\mathrm{Me}) \mathrm{C} . \mathrm{C}(\mathrm{H}) . \mathrm{C}(\mathrm{Et})\}(\mathrm{CO})_{9} \quad$ (Evans, Hursthouse, Randall, Rosenberg, Milone \& Valle, 1972).

The CVE count is 58 , implying that the title cluster is electronically unsaturated. The $\mathrm{Pt}-\mathrm{Ru}$ separations are in the upper range of previously reported distances [2.609 (1)-2.858 (1) \AA (Farrugia, 1990)], while the $\mathrm{Ru}(2 A)-\mathrm{Ru}(3 A)$ distance of 2.662 (1) \AA is somewhat shorter than the other carbonyl bridged $\mathrm{Ru}(1 A)-\mathrm{Ru}(2 A)$ vector of 2.705 (1) \AA. This suggests

Fig. 1. Molecular structure and atomic labelling scheme for molecule (A). Carbonyl C atoms have the same label as attached O atoms.

Fig. 2. Molecular structure and atomic labelling scheme for molecule (B). Carbonyl C atoms have the same label as attached O atoms.
some possible degree of localization of unsaturation along the former $\mathrm{Ru}-\mathrm{Ru}$ vector, although the evidence is not strong.

The structure is closely related to that reported for the 58 CVE cluster $\mathrm{Ru}_{3} \operatorname{Pt}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)(\mu-\mathrm{CO})_{2}-$ $(\mathrm{CO})_{7}\left(\mathrm{PCy}_{3}\right)$ (2), in which a three-electron donor phosphido group replaces the μ-allyl ligand (Powell, Brewer, Gulia \& Sawyer, 1989). The major difference in the metal frameworks is that the $M-M$ distances in the $\mathrm{Pt}-\mathrm{Ru}(1)-\mathrm{Ru}(3)$ face of the title cluster are slightly greater than found for the corresponding face in (2), presumably due to the differing bonding requirements of the PPh_{2} versus the allyl ligand. The only other structurally characterized tetrahedral $\mathrm{Ru}_{3} \mathrm{Pt}$ species is the 60 CVE cluster $\mathrm{Ru}_{3} \mathrm{Pt}\left\{\mu_{3}-\eta^{4}-\right.$ (${ }^{\text {B }} \mathrm{Bu}$).C.C.C $\left.\left({ }^{(} \mathrm{Bu}\right) . \mathrm{CH}_{2}\right\}(\mathrm{CO})_{8}(\mathrm{dppe})$ which has $\mathrm{Ru}-\mathrm{Pt}$ distances of $2.700(3)-2.892$ (3) \AA and $\mathrm{Ru}-\mathrm{Ru}$ distances of 2.770 (4)-2.904 (4) \AA (Farrugia, MacDonald \& Peacock, unpublished results).

Note added in proof: A similar $\mu-\eta^{3}$ allyl linkage acting as a three-electron donor has recently been
reported [Housecroft, Johnson, Lewis, Lunniss, Owen \& Raithby (1991). J. Organomet. Chem. 409, 271-284].

References

Bhadhuri, S., Johnson, B. F. G., Kelland, J. W., Lewis, J., Raithby, P. R., Rehani, S., Sheldrick, G. M., Wong, K. \& McPartlin, M. (1979). J. Chem. Soc. Dalton Trans. pp. 562-568.
Evans, M., Hursthouse, M., Randall, E. W., Rosenberg, E., Milone, L. \& Valle, M. (1972). J. Chem. Soc. Chem. Commun. pp. 545-546.
Farrugia, L. J. (1990). Adv. Organomet. Chem. 31, 301-391.
Farrugia, L. J., Howard, J. A. K., Mitrprachachon, P., Stone, F. G. A. \& Woodward, P. (1981). J. Chem. Soc. Dalton Trans. pp. 155-161.
Gilmore, C. J. (1984). J. Appl. Cryst. 17, 42-46.
Mallinson, P. R. \& Mur, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Orpen, A. G. (1980). J. Chem. Soc. Dalton Trans. pp. 2509-2516. Powell, J., Brewer, J. C., Gulia, G. \& Sawyer, J. F. (1989). Inorg. Chem. 28, 4470-4476.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Werner, H. (1981). Adv. Organomet. Chem. 19, 155-182.

Acta Cryst. (1991). C47, 2564-2567

Structure of 2,3-Dicyclohexyl-6,7-dihydro-5H-2a λ^{4}-thia-2,3,4a,7a-tetraazacyclopent[cd] indene-1(2H),4(2H)-diselone

By David G. Billing, Jan C. A. Boeyens, Louis Denner, Michael D. Hellyar, Long-Li Lai, Anthony J. Matthee and David H. Reid
Structural Chemistry Group, Department of Chemistry, University of the Witwatersrand, Wits 2050, Johannesburg 2001, South Africa

(Received 22 October 1990; accepted 9 April 1991)

Abstract

C}_{18} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{SSe}_{2}, M_{r}=490.435\), monoclinic, $P 2_{1} / c, a=6.455$ (9),$b=19.990$ (6), $c=16.43$ (1) \AA, $\beta=101.4(10)^{\circ}, \quad V=2078.90 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.57 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71069 \AA, \quad \mu($ Mo $K \alpha)=$ $35.49 \mathrm{~cm}^{-1}, \quad F(000)=992, T=293 \mathrm{~K}, w R=0.0567$ for 2727 reflections with $F \geq 3 \sigma(F)$. The molecule possesses elongated $\mathrm{S}-\mathrm{N}$ bonds of 1.935 (7) and 1.931 (7) \AA, an $\mathrm{N}-\mathrm{S}-\mathrm{N}$ angle of 164.8 (3) ${ }^{\circ}$ and $\mathrm{C}=$ Se bond lengths of 1.844 (9) and 1.826 (9) \AA.

Introduction. The determination of the structure of the title compound [(2) $R=$ cyclohexyl] arose from attempts to synthesize new types of $1,6,6 a \lambda^{4}$ triheterapentalene structure (Mitchell \& Reid, 1982; Nicol, 1983; Rhodes, 1987; Lai, 1990). 1,6,6a ${ }^{4}$ Triheterapentalenes contain a sequence of three heteroatoms of Groups V and VI (O, S, Se, Te, NR) in which the two bonds linking adjacent heteroatoms in the sequence are characteristically long, being up
to $c a 15 \%$ longer than the corresponding two-centre two-electron covalent bonds (Mitchell \& Reid, 1982; and earlier work and references cited therein). We have found that the 1,2,4-thiadiazolo[4,5-a]pyrimidine (2), synthesized by the reaction of 5-amino-3-methyl-1,2,4-thiadiazole with 1,3-dibromopropane (Nicol, 1983; Lai, 1990), reacts with isoselenocyanates in boiling toluene with elimination of acetonitrile and concomitant addition of two molecules of the isoselenocyanate to give products which, on the basis of elemental composition, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, and mechanistic considerations, seemed likely to possess structure (2) or structure (3). The same products were also obtained, together with 2,4-dinitrotoluene, by reaction of the tetrahydropyrimidine (4) with the appropriate isoselenocyanates in dichloromethane at room temperature. We now report that the product from the reaction of compound (1) or (4) with cyclohexyl isoselenocyanate

[^0]: * Author to whom all correspondence should be addressed.

[^1]: * The transformation $\overline{1} 00 / 01 \overline{1} / 0 \overline{1} \overline{1}$ yields a pseudo-monoclinic A-centred cell with $a=10.192, b=36.464, c=21.551 \AA, \alpha=$ 89.65, $\beta=102.08, \gamma=90.67^{\circ}$; the Laue symmetry and the departures of α and γ from 90° preclude this as a possibility.

[^2]: * Lists of structure factors, anisotropic thermal parameters, calculated H -atom positional parameters, and a complete listing of bond lengths, angles and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54459 (73 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

